
TRISTAN
Together for RISc-V Technology and ApplicatioNs 

WI2.3.5 VLSI Architecture Description and Design
Specifications

Document Number D2.1
Primary Author(s) Timo Solla
Beneficiary/ies VLSI
Document Date 2023-09-13
Document Version V 1.0
Distribution Level Public
Reference DoA AMD-101095947-2
Project Coordinator Patrick  Pype,  NXP  Semiconductors,

patrick.pype@nxp.com
Project Website www.tristan-project.eu
JU  Grant  Agreement
Number

101095947

Page 1 of 16

Public



1. Introduction
1.1 General Information
VSRISCV is a simple 32-bit RISC-V ISA CPU core that is capable of running standard
off-the-shelf software protocols (such as Ethernet) under the latest Linux operating
system kernel at low clock speeds. 

The starting point of the project is single issue option of the Bi-RISC-V core found in
https://github.com/ultraembedded/.  Initial  evaluation  of  this  core  revealed  some
weaknesses with the real software which are investigated and improved in TRISTAN
project.  These  pertain  to:  cache  architecture,  low  latency  memory  mapped  IO,
modification of  the cache to support  single-port  SRAM, compact  bridge with co-
processors,  MMU performance  improvement,  as  well  as  cleaning/rewriting  (from
Verilog to VHDL) and documenting everything to a commercial IP block level.

VSRISCV  implements  ISA  extensions  “I”  and  “M”  and  it  is  capable  of  running
operating systems like Linux. The core has separate data and instruction buses and
default cache sizes are 16KB each. The design is written in VHDL. Design hierarchy
is shown below.
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Figure 1: WI2.3.5 VHDL Design hierarchy

1.2 Purpose and Scope
The document describes the RISC-V core developed by VLSI Solution. All information
in the document is public and can be freely distributed.

1.3 Acronyms and Definitions
Acronym Description
ASIC Application Specific Integrated Circuit
CSR Control and Status Registers
DDR Double data rate high-speed dynamic random access memory
DRAM Dynamic Random Access Memory
FPGA Field Programmable Gate Array
IoT Internet of Things
IP Intellectual Property
ISA Instruction Set Architecture
LSB Least Significant Bit
MMU Memory Management Unit
MSB Most Significant Bit
OS Operating System
RAM Random Access Memory
SoC System on a Chip
SRAM Static Random Access Memory
UART Universal Asynchronous  Receiver Transmitter

2. Architecture
2.1 Place in the System
To build a SoC capable of running a Linux operating system the processor core
vsriscv_top needs peripherals, memory controller and means to upload software to
DDR memory. Below is shown a minimal FPGA hardware for this purpose.
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Figure 2: WI2.3.5 minimal FPGA hardware

 (*) : FPGA IP block

 (**): External DDR memory chip (DDR2, DDR3 etc.)

To run Linux OS at least interrupt controller and UART are needed. In this setup the
core stays in reset after external reset is de-asserted. Dbg_uart acts as a third AXI4
master and it is used to upload the software to the DDR memory by using UART
protocol. First a command is given (rd or wr) followed by data length, address and
data. Once the software is uploaded to the DDR memory the core reset register in
dbg_uart module is de-asserted with UART command and the core boots up.

2.2 Block Diagram
The vsriscv_top module consists of a 32-bit riscv core, instruction cache, data cache
and peripheral bridge.
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Figure 3. WI2.3.5 vsriscv_top module

2.3 Interfaces
Icache and dcaches both interface to DDR memory via an AXI4 bus master.

Peripherals are connected to riscv core’s data bus aside with data cache.  All non-
cacheable accesses are assumed to be peripheral transactions (outside the range of
core parameters MEM_CACHE_ADDR_MIN and MEM_CACHE_ADDR_MAX. There could
also be ROM memory if needed but the deliveries will have none.

2.3.1 AXI4 cache interfaces
Cache interfaces are a standard AXI4 bus except that icache only uses read channel
signals (read only cache) as the dcache needs both the read and write channels.

2.3.2 VSBUS peripheral bus
For peripherals a very simple bus interface is added through a bridge. This interface
is compliant with a bus used in vsdsp4 (Proprietary DSP processor of VLSI Solution).
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This bus does single word in single cycle transactions only. The peripherals cannot
halt the processor. The signals and bus interface protocol are shown below.

Figure 4. WI2.3.5 signals and bus interface protocol

Peripheral module’s outputs can be connected to core pp_din bus using OR- or AND-
resolution.

2.4 Sub-Modules
The  design  consists  of  three  main  modules  being  the  vsriscv_core,  icache  and
dcache.

2.4.1 Vsriscv_core
The core is designed to be simple, small, and efficient, with a focus on low-power
and low-latency applications such as Internet of Things (IoT) devices. It has a single
issue in-order pipeline that supports the basic RV32IM riscv ISA. It also suports Zicsr
extension so operating systems like Linux can be used.

Extension definitions:

- I : Integer

- M : Integer multiplication and division

-Zicsr : Control and Status Register Access / Privileged Architecture

            The CSR access instructions as well as the exception and interrupt system

              - CSR access: csrrw, csrrs, csrrc, csrrwi, csrrsi, csrrci
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              - Environment: mret, wfi

The multiplier is a 32-bit multiplier, and it executes mul, mulh, mulhsu and mulhu
instructions  in  one  clock  cycle.  Divider  executes   div,  divu,  rem  and  remu
instructions in 32 clock cycles.

Block diagram of the core is shown below

Figure 5: WI2.3.5 Block diagram of the core

2.4.2 Icache
Instruction cache is a 32-bit set associative cache and has four parameters as VHDL
generics:

         generic (AXI_ID      : std_logic_vector      := X"8";

                  WAYS        : natural range 1 to 8  := 2;

                  LINE_ADDR_W : natural range 6 to 12 := 8;

                  LINE_SIZE_W : natural range 2 to 8  := 5 );

Parameter default values make a 2-way cache with 2^8 lines and 2(5-2) words on a
line.  This  makes  a  total  of  16kB  RAM.  The  VHDL  code  is  written  such  that
conventional single port RAMs can be used. In two way cache there are two tag RAM
and two data RAMs. The RAMs must be semi-synchronous (address, data inputs, rd-
and  wr-enable  registered).  Memory  sizes  depend  from  parameters  and  default
values make tag RAMas 20 bits (32 - LINE_ADDR_W – LINE_SIZE_W + 1 VALID bit) x
256  (2LINE_ADDR_W).  The  data  RAM  sizes  are  32bits   x  2048
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(2(LINE_ADDR_w+LINE_SIZE_W-2)). As icache is a read only the AXI4 write channel
is omitted. The cache implementation is shown in Figure 6:

Figure 6: WI2.3.5 Cache implementation

2.4.3 Dcache
Data cache has the same parameters and same type of memories as icache except
that the tag RAMs have one more bit as they also store the LINE DIRTY flag. Dcache
also has AXI4 write channel to store dirty lines to main memory.

The cache implementation principle is  identical  with the icache (of  the previous
paragraph).

2.5 Clocking Strategy
All the modules in vsriscv_top are clocked with the same single clock source. The
clock is externally generated with a PLL and can be set to any value which is less
than the maximum operating frequency of the block. In ASIC synthesis the clock
gating insertion can be enabled to save power.

2.6 Reset Strategy
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Active low reset is synchronous, and it must be asserted and synchronized outside
this  block.  Clock’s  falling  edge  can  be  used  to  de-assert  the  xrst_i  signal.  This
ensures that no race situation can occur in any of the registers. Once the reset is
de-asserted the caches first initialize their tag memories and stall riscv core until
initialization is finished. After that core starts executing instruction from a given
boot address (generic BOOT_ADDR, default 0x8000000). When reset is initialized, it
is assumed that the rest of the system is already initialized (like DDR memory init
done).

2.7 Power Management Strategy
Module itself has no power saving features. It is designed in a way that the clock
can be halted, and the system maintains its state. The clock frequency can also be
adjusted dynamically. 

2.8 Debugging Strategy
Since  the  vsriscv  core  can  be  run  in  the  FPGA,  the  debugging  can  be  done in
combination of VHDL simulation and FPGA prototyping.

3. Design Specifications
3.1 Pin-list
Vsriscv_top parameters and pins are listed in the VHDL entity declaration below

entity vsriscv_top is
  generic ( BOOT_ADDR          : slv_t := X"80000000";
            CPU_ID             : slv_t := X"00000000";  -- riscv core hart id
            ICACHE_AXI_ID      : slv_t := X"8";
            DCACHE_AXI_ID      : slv_t := X"4";
            MEM_CACHE_ADDR_MIN : slv_t := X"80000000";
            MEM_CACHE_ADDR_MAX : slv_t := X"8FFFFFFF" );
  port ( clk_i           : in  std_logic;
         xrst_i          : in  std_logic;  -- syncr reset

Page 9 of 16

Public



         xrst_cpu_i      : in  std_logic;
         -- icache AXI read channel
         axi_i_arready_i : in  std_logic;
         axi_i_rvalid_i  : in  std_logic;
         axi_i_rdata_i   : in  slv_31_00;
         axi_i_rresp_i   : in  slv_01_00;
         axi_i_rid_i     : in  slv_03_00;
         axi_i_rlast_i   : in  std_logic;
         axi_i_arvalid_o : out std_logic;
         axi_i_araddr_o  : out slv_31_00;
         axi_i_arid_o    : out slv_03_00;
         axi_i_arlen_o   : out slv_07_00;
         axi_i_arburst_o : out slv_01_00;
         axi_i_rready_o  : out std_logic;
         -- NOTE: NO AXI write channel in icache
         -- dcache AXI read channel, inputs
         axi_d_arready_i : in  std_logic;
         axi_d_rvalid_i  : in  std_logic;
         axi_d_rdata_i   : in  slv_31_00;
         axi_d_rresp_i   : in  slv_01_00;
         axi_d_rid_i     : in  slv_03_00;
         axi_d_rlast_i   : in  std_logic;
         axi_d_arvalid_o : out std_logic;
         axi_d_araddr_o  : out slv_31_00;
         axi_d_arid_o    : out slv_03_00;
         axi_d_arlen_o   : out slv_07_00;
         axi_d_arburst_o : out slv_01_00;
         axi_d_rready_o  : out std_logic;
         -- dcache AXI write channel
         axi_d_awready_i : in  std_logic; 
         axi_d_wready_i  : in  std_logic;
         axi_d_bvalid_i  : in  std_logic;
         axi_d_bresp_i   : in  slv_01_00;
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         axi_d_bid_i     : in  slv_03_00;
         axi_d_awvalid_o : out std_logic; 
         axi_d_awaddr_o  : out slv_31_00;
         axi_d_awid_o    : out slv_03_00;
         axi_d_awlen_o   : out slv_07_00;
         axi_d_awburst_o : out slv_01_00;
         axi_d_wvalid_o  : out std_logic;
         axi_d_wdata_o   : out slv_31_00;
         axi_d_wstrb_o   : out slv_03_00;
         axi_d_wlast_o   : out std_logic;
         axi_d_bready_o  : out std_logic;
         --  VSBUS (peripheral bus)
         pp_intr_i       : in  std_logic;       -- perip interrupt, single pulse
         pp_addr_o       : out slv_31_00;
         pp_rd_o         : out std_logic;
         pp_rd_data_i    : in  slv_31_00;
         pp_wr_o         : out slv_03_00;
         pp_wr_data_o    : out slv_31_00 );
end entity riscv_top;
The module has three external interface buses:

- Icache AXI4 master read channel
- Dcache AXI4 master read/write channel
- VSBUS peripheral bus

3.2 3.2 Register Map
The icache and dcache do not have any configuration or status registers. In icache
tag RAMs the MSB (19 in default configuration) bit is VALID bit and LSB bits (18:0)
are TAG_ADDR bits. In dcache the tag RAMs MSB bit (20) is line DIRTY bit, MSB-1 is
VALID bit and LSB bits (18:0) are TAG_ADDR bits.

Vsriscv_core has registers as defined in base ISA spec v2.1 and privileged ISA spec
v1.11.  The  register  file  has  32  integer  registers  and  it  is  located  in

Page 11 of 16

Public

https://github.com/ultraembedded/riscv/tree/master/doc/riscv_privileged_spec.pdf
https://github.com/ultraembedded/riscv/tree/master/doc/riscv_privileged_spec.pdf
https://github.com/ultraembedded/riscv/tree/master/doc/riscv_isa_spec.pdf


vsriscv_core/riscv_issue/ riscv_regfile/rfile_q[31:0][31:0]. Registers are listed in the
next table.

rfile_q IP_REGS_BASE_ADDRESS + 0x0000

Reset Value = 0x0000 0000

Register ABI Name Description (typical use)

x28-x31 t3-6 Temporaries

x18-x27 s2-11 Saved registers

x12-x17 a2-7 Function arguments

x10-x11 a0-1 Function Arguments/return values

x9 s1 Saved register

x8 s0/fp Saved register/Frame pointer

x5-x7 t0-2 Temporaries

x4 tp Thread pointer

x3 gp Global pointer

x2 sp Stack pointer

x1 ra Return address

x0 zero Hard-wired zero

Table 1: WI2.3.5 RiscV register file

Additionally, the core requires Control and Status Registers (CSRs). These registers
control  various aspects of the processor's behavior and store status information.
These registers are listed in the next table.

CSR REGISTERS IP_REGS_BASE_ADDRESS + 0x0000

Reset Value = 0x0000 0000

Machine-Level CSRs (32-bit registers)

Register Address Description (typical use)

MSTATUS X"300" Machine status register

MISA X"301" Machine ISA register, indicating supported ISA extensions
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MIE X"304" Machine interrupt enable

MTVEC X"305" Machine trap vector

MSCRATCH X"340" Machine scratch register

MEPC X"341" Machine exception program counter

MCAUSE X"342" Machine exception cause

MTVAL X"343"
Machine trap value (additional information about certain 
exceptions)

MIP X"344" Machine interrupt pending

MCYCLE X"C00" Machine performance counters

MTIME X"C01" Machine performance counters

MTIMEH X"C81" Upper 32 bits of performance counters

MHARTID X"F14" Machine hardware thread ID

MTIMECMP X"7C0" Timer compare register

MEDELEG X"302" Machine exception delegation register

MIDELEG X"303" Machine exception delegation register

Supervisor-Level CSRs (32-bit) (Some CSRs are shared with the Machine-Level)

SSTATUS X"100" Supervisor status register

SIE X"104" Supervisor interrupt enable

STVEC X"105" Supervisor trap vector

SSCRATCH X"140" Supervisor scratch register

SEPC X"141" Supervisor exception program counter

SCAUSE X"142" Supervisor exception cause

STVAL X"143" Supervisor trap value

SIP X"144" Supervisor interrupt pending

SATP X"180"

Supervisor Address Translation and Protection Register

[31]       MODE      MODE=1 uses Sv32 Address Translation

[30:22]   ASID        Address Space Identifier

[21:0]     PPN         Physical Page Number of the root page 
table
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DCACHE control CSRs

DFLUSH X"3A0" Flush dcache

DWRITEBACK X"3A1" Writeback dcache line

DINVALIDATE X"3A2" Invalidate dcache line

Table 2: WI2.3.5 Riscv control and status registers

3.3 Functional Description
3.3.1 Vsriscv_core
Vsriscv_core has the processor core.  It fetches the instructions and data from the
memories and executes them according to the 32-bit ISA instruction set.

3.3.2 Icache
Instruction cache state diagram is shown below.

Figure 7: WI2.3.5 Instruction cache state diagram

After reset the tag RAMs must first be initialized, and it takes 2LINE_SIZE_W clock
cycles. After that the req_accept_o is set, and cache is ready to service any core
read request. Individual lines can be invalidated by setting req_invalidate_i high for
one clock cycle when req_accept_o in high. Similarly, the tag RAMs can be flushed
by  setting  req_flush_i  high  for  one  clock  cycle  when  cache  is  ready  to  accept
requests.
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3.3.3 Dcache
Data cache is a set associative cache like icache and has the same parameters and
memory configurations. Since data bus is read and write bus there is one more bit
in  the  tag  RAMs  though,  namely  the  LINE_DIRTY  flag.  Dcache  state  machine  is
shown below.

Figure 8: WI2.3.5 Dcache state machine

4. References
Bi-RISC-V
core

https://github.com/ultraembedded/
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ISA  spec
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https://github.com/ultraembedded/riscv/tree/master/doc/
riscv_isa_spec.pdf

privileged
ISA  spec
v1.11.

https://github.com/ultraembedded/riscv/tree/master/doc/
riscv_privileged_spec.pdf
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