VSIDE User's Manual

Revision 2.01
Aug 4, 2010
Revision history:
Rev. Date Description
1.00 04/08/2003 First edition
1.01 04/15/2003 Typo corrections
2.00 04/07/2008 VSIDE 2.00b, complete rewrite
2.01 08/04/2010 VSIDE 2.01 update
VSIDE User's Manual Page 1

Table of Contents

L IEEOAUCTION. ...ttt ettt e et e b e et e e bt e s ab e e e st e e ebbeeeeabbeeeenneee 5
L L F@ALUTES. .ttt ettt et st e b e e et e bt e sa bt e bt e e ab e e bt e st e e bt e e s aabeeenan 6
1.2, REQUITEIMENLS. ..ccueeieiiieiie ettt ettt ettt ettt et e st e bt e et e et e e sateenbeessbeeateenaaeenbeeeensbeeesnsaeeenees 6

2. INSTAITATION. ..ottt et ettt et e et e s bt e et e e ht e et e e nhb e e e e bt eeeebeeeens 7
2.1. Installing Under WINAOWS...........cccuieiiiiiieiiieiie ettt ettt e et e seaesbeesaaeebeeesnneeeenes 7
2.2, Installing UNder LINUX.........ccoouiiiiiiiiieiieie ettt ettt ettt et e et e s eeeeteesaeeenbeesnseeeeaas 7

3. Getting started With VSIDE..........ccoiiiiiiiiiioii ettt et sve et essbeessaesbaesaaaee e 9
3L INEEOAUCTION. ¢ttt sttt ettt ettt s et e bt et e bt et e et saee bt e st e sneenaeensaeens 9
RN O (72181 Yo 1500 () [o USSP 10
3.3. MOdifying SOUICE COUEC....cccuuiiiiiiiiiiiieiee ettt ette et e et e e st eeesebeeensaeeensnaesnseaesnseeens 12
3.4 COMPIIING. ...ttt ettt et b e et sae e e at et e et e et es 12
3.5. Executing and debUZZING.........ccovviieiiieiiiieeiee ettt ettt e st e e st e e st e e sateeessseeessaeenseeeens 13

3.5.1. Problems with the emulator?..........cc.cooiiiiiiiiniiiieee e 15
3.6. Adding files t0 the PrOJECT.......ccuiiiiiiieiiieie ettt ettt e st ee e sibeeeenbeeeenes 15
3.7, Setting DIrEaKPOINTS.....cccvieiuieiiieitieeiieieeeie et et et e ettt eteesaeebeessbeesseessseessaeessssaeesasseeesasseeeanes 17
3.8. Variable eValUation........c.c.ooiiiiiiiiieeeies ettt et 18
3.9. MOdifying ProJECt OPLIONS.cccuvieeierieeiieeeiieeetieeeteeeeaeeseareeeetaeeesaeessseeesseeessseeessseeessseeessseenns 20

4. Development ENVIFONIMENL.cc.vieriuieeriieeetieeeteeesteeeseteeesteesaeeesseeessseeessseeasssseeeeessssssseesssnssssees 22

i B 13 (06 L0 o1 o) s O USRS STSPPPP 22
4.1.1. Projects and SOIULIONS.......c.ueieiuiieiiiieeie e ettt e eieeeeiee e st e et e st e e saaeeessbeeesseeesaeeensaeeensaens 22
4.1.2. CONTIGUIALIONS.eeeutieiiieiieeiie et ettt et te et etteeebeeteesbeebeeesbeeseesnseeseeenseeseesnseenseesnseeennses 22
4.1.3. DOCK WINAOWS....c..eiriiiiiiiiiniiiieiiesitet ettt ettt sttt ettt et st sae et saeenbe e 23

4.2, SOIULION DIOWSETeeientieiiieiieitteie ettt ettt ettt ettt e s at et et e sb e et et e sbeebesseesaeenbeenbeeenseeennes 23
4.2.1. File OPCIAtIONS. ...ceiuvieuiieiieeiieeiieeteeeiteeteeseteeteestteebeesateesseessseensaessseenseessseensaesnseennseeeannsns 24
4.2.2. FOIA@T OPCIALIONS. ...ccuiiieiiieeieiieeeiee ettt e ectte e et e e et e e eteeeesteeessseeesseeesseeesseeensaeesnsseesssneeens 25
4.2.3. PTOJECT OPCTATIONS. .. .uveeeiieeeiieeeireeeiteeeteeeeteeessteeessreeessseessseessseessseesnsseesnsseesnseeesssneeens 25
4.2.4. SOIULION OPEIATIONS. ¢ .euvtiitenteeiterttenteeiteettete et st e bt eatesbe e bt eatesbeesteebeebteenbteesbteenmeeesaneenas 26

T T w11) PR 26

A4, BUILAING. ..ottt et et et e st e et e e st e e bt e e tbeeeentbeeeeataeeeentaeens 27

VSIDE User's Manual Page 2

4.4.T. BUIIA COMMEANAS ...ttt e e e e e e e et e e e e e e e e e e e e e eeaaeeenaaaaes 28

4.4.2. Configuration MANAZET........cccveeerrreerereeeitreeeitteeeseeesssreessseeessseeessseeessseeessseessssesesssesssssenns 28
S T\Y, (S5 4 L USSP SPRSPRSRRIN 29
T B 1 (< 31155 L ST 29
4.5.2. BTt MICTIU. ...ttt ettt ettt et sttt et e at e bt et st e et eenbaeenateens 30
4.5.3. PrOJECE TNETIU......eeiuiiiiiieiie ettt ettt et ettt st e bt eeabeebeesateesbeeeenbbeeesnsbeeeansaeeennsaeens 30
4.5.4. BUII MU ..ottt ettt ettt et st be e et e e e e 31
4.5.5. DEDUZ MEMUL.....eeiiiiieiiieiiieeiieeie et teete et et e et e st e eteestaeesbeessseessaessseenseesssesassaeesnsseeesnnseens 31
4.5.6. WINAOWS IMEIIUL....uutiiutiiiiiieiie ettt te ettt ettt ettt e sate e bt e sabe e bt e sateeenbbeeesabbeeeanbeeeennneeens 31
TN A = (511538 1 1<) 1 1 RSP 31
4.6. Creating @ NEW PIOJECT...c.uerutiriirtiriierteeteett ettt ettt et e st e steetesaeesbeesbeebtesbeebesateenbeeenbeeenaeeenane 31
g S (S0 0] 2 o) 4 1P UER PSR 32
4.8. PIOJECE OPTIONS. .. uieeiieiiieitie ettt ettt ettt ettt e et esbe e beesateesbeeesbeeseeenbeenseaesnsseaeensseaeensseeas 35
481, GONETAL ..ottt st et et et 35
TN O 01011113 1 3 U PSPPSR 36
4.8.3. ASSCIMDICT.......eeuiiiiiiiiietiete ettt ettt a et st re e 36

R N 3111 (< SRS PRSPPI 37
4.8.5. DEDUZZING......eeieiiiieiiieeeiie ettt et e ettt e et e e st e e e ta e e st aeessaeeensbeeessaeesaaeeeeannnreeaeeans 38
480, TOOIS.....eieiiie ettt et e et e e e et e et e e et e e e et e e e e aaeeaabeeeeabaeeraaeetaeeeraaeanraeas 38
4.9, SOIULION OPTIOMIS.uviiiiiieeiieeeittee ettt e eitteeeteeesteeessteeessseeassaeesseeassseessssaesssesessseeessseeesassssseeeenns 38
4.9.1. CONTIGUIALIONS.eeeutieiiieiie et et et et te et e etteeteesteeeteeteeesbeeteeenseenseeenseeseesnsaenseeanseesnnsns 39
492, COTES....eueeeeete ettt ettt et ettt h e et h e et b et e st e e b e e naneee s 40
4.9.3. DEDUZZING....c..eieiieiiieiieiie ettt ettt e eteeseteebeestbeesbeessbeesaessseesseessseenseesssaessseeeassseesasses 40

S DIEDUGZINE. ...vi ettt ettt ettt e et e st e e bt e s taeesbeessaeenbeeesbeenbeeeteeanbeennbaaeeanbaeeenbaeeenseeeanns 41
5.1. DebUZ COMMANGS.......ccoiiiiiiiieeiie ettt ettt e et e e stee e sbeeesaseeeeessnraaeeesensssseeeeeennnns 41
5.2. DEDUZ WINAOWS......eeiiiiieiiiieeitieeeite e eieeeeiteesteeesteeeseteeetaeeessaeeaaseeasseeessseeesnsssaaessansssseeeseannes 42
5.2.1. WatCh WINAOW.....ccviiiiiiieciie ettt et e et e e et e e s ba e e e e e eansaaeeeeennnnaes 43
5.2.2. Active variables WINAOW..........ccocuiiiiiieiieeciie ettt ettt e eesereeeavee e enees 43
5.2.3. Peripheral WINAOW........ccoeiuiiiiiiiiiieiieiie ettt ettt et ettt e e baeesenbaeeennseeeenes 44
5.2.4. LOZ WINAOW.....tiiiiiiiieiiie ettt ettt ettt et e st e beesete et e sabeenbeeessbeeesnbeeesnseaesnes 44
5.2.5. Standard iInput/OUtPUt WINAOW.......cccueeriiiiieiieeiieie ettt ete et eereesaeesebeeeeereeeenes 45

VSIDE User's Manual Page 3

5.2.6. Breakpoint WINAOW........ccccuiiiiiieeiiieeiieeeiee st e ste e estee e eesaaeeeaaeeenaeeesnssaaeesennnnnes 45

5.2.7. Command console WINAOW.........cc.coiiiiiiiiiiiiieniciierteeeeste ettt e s 46
5.2.8. MEMOTY WINAOW........eiiiiiiiieiieiieetie et eeite et et e et e et te et estte st e e steeebeesseesabeeeenbeeeenseeenns 47
5.2.9. REZISTET WINAOW.....ccviiiiiiieiiieeeieeeettee et e ettt e et e e st e e s teeesstaeessaeeessseeesaeesssseesnsseesnseeennns 48
5.2.10. Disassembly WINAOW.........cccueeiuiiiiiiiiieiiieiie et eite et et ettt et e et eeeebeeesebeeeesbeeeenes 49
5.3. Simulating executables direCtLy..........couiriiiiiriiiiiiiiieeeee e 50
0. MISCEIIANEOUS. ...ttt ettt ettt et et e bt e e et e bt e st e eae e bt entesseebeenseeeneeeneean 51
6.1. CommMANd [INE OPLIONS.eeuieieiieiieeiieiie et ertee et etteeteerteesaeesteeebeenseeenbeeseesnseenssesnsaeessnseeeas 51
6.2. Creating Project teMPLALES.c.uieeiuieeiieieeeieeeeieeeeieeeetee et e et e et e e staeesbaeesasbaaeeesesnnsseeeeeannes 52
6.3. mem_deSC f11€ TOIMAL........eiiiiiiiieiiiecee et sbe e e e e e e e e neneeeeeeennes 53
6.3.1. MEMORY SECHOMeeitiiiiieiieiit ettt ettt et sie e et e st e et e e saeesnbeesseesnseeeens 53
0.3.2. CORE SECHOMoeuiiiieiiieiieeiieie ettt ettt st eae e esseenseeseesseeseeneeenseeenneeennes 54
6.3.3. PERIPHERAL SECLIONoouiiiiiiiiiiiiieieeiesteeeseeste ettt sttt 55
6.3.4. INTERRUPT SECLIOMN ...c.eeiiiriiiiiiieniiiieeieeit ettt ettt sttt 56
6.3.5. Peripheral INStANtIationc.cccuieriieiiieriieiiieeieeiee et esieeeteeteesveesebeeeeereeeesseeessseeennes 56

VSIDE User's Manual

Page 4

1. Introduction

1. Introduction

VSIDE is an integrated software development environment for VLSI Solution's DSP cores.

'@ vside_example 2 - VSIDE (VLSI Solution) Q@lﬁ
Eile Edit Project Build Debug Window Help |
AL : I
fn [Emulation-Debug kM D Oe &®H e o
Breakpoints g X filename.c X | Registers g X
: wole
Active Mame Condition M Register Hex Value ik
S 00000000000
@ flename.c(123) 0x SRR S : X
R | 0x0000
3 R 0x%0000
ph._FsPhNandBeinitialize(p 0x00
. map = FsMapTnCreate ph, 0); o El 0x00000E007S
player_currentFile = 0; Ox000BFFFFFF
OxFFFF
< un | " if (InitFileSystemi)) Ox0BFF
i a2 x File Sy Not B d, play low sine 0x00
5ol “"'? B”.)wser a regigter u intlé *g = (u intlé*) g ypre +-D O0x0000F2FFFF =
Solution "vside_example’ - fputs ("NO FAT", stdout) ; 10 Ox1A4F
51 Project 'vside_example' e e e e L e e -11 0x1A50
aOIﬁer SinTest () ; Exit wo Sir Tz Play weir 2 Ox1A41
13 Ox1A4E
I oelse |
! f 14 0x1874
Header files L -
= 3 ||| 15 Ox1A84
P 16 0x 1884
B - o Ox1D09
1 EN) minifatInfo.supportedSuffixes = support ~IPRO:PC 0x00003001
[gpProject ‘vside_example_2 | | player.totalFiles = OpenFile |OxE££E) 7 ~IPRL i
N 1Y 0x 2003
SetHookFunetion | (u_intlé) IdleHook, MyId LE OxFFFF
22 -LR0O 0x0198
< | k while (1) { // plaver oop - -LR1 ox7C70 -
5L B
Goto addr: 0x2000
0x0000Z2000 1E72 FFRAE AFSA B31S _r._ .. Z._._
0x00002004 €6€5€ 3135 0455 TEEF £V15_. .~
0x00002008 17BZ 3EES 318A BBBS __>_1.._._
O0x0000200C BABZ DBSA A6RA V18B _...__.g-
0x00002010 1CS50 8072 5581 4BBO _P.cU.E.
0x00002014 &61F 8005 8D41 7356 £..._RyV
0x00002018 5633 24%3 E854 155F W3s..T._
0x0000201C D014 D0ODS BC40 5185 _RO_
Memory Log Window I Standard Input/Output | Command console
Cycle <N/A> Ln126 Coll

1.1. Features

- Integrated development environment (IDE) for VSDSP cores, including:

o project management

o code editor (with syntax highlighting)

VSIDE User's Manual

Page 5

1. Introduction

o C compiler

o assembler

o debugger
C and assembly level debugging using hardware emulator (and/or simulator)
Two-point profiling (simulator only)
System simulation using C-modeled custom peripherals

Multi-OS support: Windows XP / Vista, Red Hat Linux (available upon request)

1.2. Requirements

Windows:

Microsoft Windows XP Professional (SP2) or Windows Vista
PC x86 architecture

Linux:

Red Hat Linux 7.0 (or newer)
PC x86 architecture

VSIDE User's Manual Page 6

2. Installation

2. Installation

2.1. Installing under Windows

Make sure you have administrator privileges and run vside win32.exe to start setup. Please read the
license agreement carefully and click agree to proceed. The installer will prompt for a destination

directory, typically “C:\Program Files\VSIDE” is a good choice.

After the installation completes, VSIDE shortcut should appear in the start menu. Click the shortcut
to launch VSIDE.

Installer will also deploy automatic un-installer program which can be invoked from the start menu

as well.

2.2. Installing under Linux

1) Unpack VSIDE tar.gz package to any directory. This directory is now referred as VSIDE.
E.g. Installing package at /tmp/ to /ust/local/:

cd /usr/local

tar xfvz /tmp/vside_linux.tar.gz
2) Set VSDSP_DIR environment variable to point to VSIDE/config.
For bash:

VSDSP_DIR=/usr/local/vside/config

export VSDSP_DIR

For csh or tcsh:
setenv VSDSP_DIR /usr/local/vside/config

3) Add VSIDE/bin path to SPATH. Without this, compiling won't work in IDE.
For bash:

PATH=/usr/local/vside/bin:SPATH

export PATH

For csh or tcsh:

VSIDE User's Manual Page 7

2. Installation

setenv PATH /usr/local/vside/bin:PATH

4) CD to VSIDE path and run VSIDE:
cd vside
Jvside

VSIDE User's Manual Page 8

3. Getting started with VSIDE

3. Getting started with VSIDE

3.1. Introduction

This chapter describes the basics of VSIDE. If you have used similar integrated development
environments before, you may find that you're already familiar with most of the content. The C
programming language will be used throughout this chapter; any experience or knowledge on low-

level programming of the VSDSP cores is not required.

As an exercise we will create a “Hello world” project. With this project we will learn how to

execute code and how to use the basic debugging features.

The target platform for this tutorial will be VLSI Solution's versatile audio chip, V'S7053, which will
be used through a hardware emulator. You will need a functional VS1053 developer board
connected to your system in order to follow the exercise properly. If you do not have one, you can

purchase it from the VLSI Web Store.
To begin the tutorial, start up VSIDE.
The main window should look something like the illustration below.

All windows are empty and most features are disabled, since no projects are open.

VSIDE User's Manual Page 9

3. Getting started with VSIDE

I Eite Edit Emject Build Debug Window Help
- BRE I~ = I - B o o
PN N DG &KBDPE O 6 HE L 7

Solution Browser & x

Log Window _ 5 X
Build output ||> Debugging output

Log Window Standard Input/Cutput | Command console Loaded Peripherals |

Cycle0 Ln0 Col 0

3.2. Creating a project

Let's start the tutorial by creating the “Hello world” project.

The easiest way to create a new project is to use a project template which contains “main.c” source

file and proper project settings.

« Under the File menu, click New and then click Project/solution.

VSIDE User's Manual Page 10

3. Getting started with VSIDE

A “New Project” dialog will appear (illustrated below").

The first task is to define a host solution for the project. A solution is a logical entity which contains
hardware-specific options (emulation settings for example) for the project. Each VSIDE project
must be associated with exactly one solution. A solution, on the other hand, can contain any number

of projects.

+ Check the radio button “Create new solution based on template” and select

“vs1053_solution”.

+ Enter a memorable name for the solution (e.g. “hello”)

MNews Project @

Solukion | Project |

Insert new project inka currently open solution

@ Create new solution based on template:

w1000 solution

31053 solution

Solution nare:

MySolution
Location:
ChUsersiMelDocumentstsolutions Browse
Empty solution {without a project) ek] | Cancel |

» Click Next

* please note that the actual set of available templates may differ as VLSI solution's product family

evolves

VSIDE User's Manual Page 11

3. Getting started with VSIDE

Now you will see a list of available project templates. Content of the list varies depending on which
solution type was selected. To display all project templates, uncheck “Show only compatible

templates” option.

" Meww Project |
Solution Project
Project template: | Show only compatible templates

WS1053 hello_world

WEL053_audio_effects
WE1053_decimator
W51053_delay
WE1053_stereofir
We1053_uart

wery simple 'hello world' application.

Project narme: MyPraoject
Project Folder: C Y UsersiMe) Documentssolutions'| My Solution
Create subfolder For project | Back | | ik | | Cancel

A short description of each alternative is available below the list box.

« Select “vs1053 hello_world” as the starting point and click OK to dismiss the project

creation dialog.

Shortly, the solution browser will populate with the new project, “hello”, which is located under a
solution with the same name. Solution browser displays the solution and project hierarchy, as well

as all the related source files (in this case, there is only one source file, “main.c”).

VSIDE User's Manual Page 12

3. Getting started with VSIDE

Solution Browser @

T} Solution "hello’
i,--_EEPrDject ‘helle’ (Active)
é""aﬂmer
F-{ASM files
E'"'{'—jHeader files
4 Esource files
s

3.3. Modifying source code
» Double-click “main.c” inside the solution browser. This will open the
“main.c” file in the integrated editor.

* Inside the editor, modify the string “Hello world!” to something different,

e.g. “This is fun!”.

You will notice that “main.c” tab will change to “main.c*”: the asterisk informs that the file has

been modified but not saved.

3.4. Compiling
Now its time to build the executable. Note that all unsaved sources will be automatically saved
when the compile process is started.

 From the Build menu, select Build solution. You can also do this by

pressing F7.

VSIDE User's Manual Page 13

3. Getting started with VSIDE

The build output (on the bottom of the screen by default) should display the following.

Log Window @

|vce —g ~h hw_desc —00 -fsmall-code -DDEBUE -Iinclude -Ic:\VSIDE\vside srchsrchrelease/include -o Emulation-Debug/main.c

| Successfully compiled 368 lines (& in scurce file)
1 T o T ok B S o

;vslink -k -m mem user lib/roml000.o lib/c-nand.o Emulation-Debug/main.o -o Emilation-Debug/hello.coff -Llib -lc -ldevll

| Finished.

| « I =
| |

You can see a line with gray background, which informs of a compilation warning. Any possible

errors are shown with red background (as for now, there should be none).

* Double click with left mouse button on the gray line, IDE will display the

row of the source code that the warning is referring to.

You can ignore this warning.

3.5. Executing and debugging

Now that the project executable is successfully built, we can test it using the hardware emulator.
The emulator executes the code using the real DSP core but allows setting breakpoints and tracking

the values of the registers and memory locations (variables).

VSIDE communicates with the developer board using a serial port interface. Before executing the

program for the first time, it is a good idea to check that serial port parameters are correctly set up.
* Right-click on Solution “hello” in the solution explorer window.

* From the pop-up menu, select Properties.

VSIDE User's Manual Page 14

3. Getting started with VSIDE

The solution options dialog will open.

’ Solution 'Hello' Options

Edit Solution Configuration:

Debug Settings
Debug mode:

Serial Port Settings

Serial port:
Initial spead:
Target speed:

Speed multiplisr:

Targek Settings
Chip type:

Clock speed:
Monitor File:

Exec Addr:

’Emulation—Debug

Configurations I iZares | Debugging |

[HW Ernulation

CoM1L

9600

115200

[ws1053

=)

12,288 MHz

050

Browse, .

Close

* Click on the Debugging tab to see the emulator parameters.

VSIDE User's Manual

Page 15

3. Getting started with VSIDE

Make sure that debug mode is set to “HW Emulation”. Serial port parameters are located right
below. If your developer board is connected to a serial port other than COM1, select the appropriate

port from the pull down list.

In this example, we use VS1053 chip. Thus, make sure “vs1053” is selected as the chip type.
Execution address should be “0x50” for this configuration. Once everything seems right, click close

to dismiss the dialog and accept any changes made.

At this point, if your hardware is properly connected to the PC and powered up, you should be able
to execute the program. Please note that the hardware must be reset every time before the
program is loaded. There is a dedicated reset button on the developer board, press it shortly to make

the chip reset itself.

You can execute the program as a whole by clicking the yellow triangle icon (“Play”) at the toolbar

or by selecting Run from the Debug menu (or easier yet, by using the keyboard shortcut, F5).
* Reset the board and press F5 to execute the program

VSIDE will now switch to debug mode, and the window layout will change. The program should

execute and display the greeting text in the standard input/output window.

* If standard input/output tab (located at the bottom of the VSIDE window on

the default screen layout) is not visible, click the title to see the output.

Note that the program is still running. There is an infinite loop after the puts() statement in the

program. Let's stop it.
* Click the yellow square (“Stop”) icon or select Stop from the Debug menu

to stop the program and return to edit mode.

3.5.1. Problems with the emulator?

If you get “Invalid serial port or handshaking error” message while trying to execute, the reason

might be that

* developer board is not properly connected. Check that it is powered up

(power led is lit) and the serial cable is connected and functional.

VSIDE User's Manual Page 16

3. Getting started with VSIDE

* The chip is not in reset state. Press the on board and try loading the

program again.

3.6. Adding files to the project

Next, we will create a new source file that will be included in the current project.
¢ Select File in the main menu, click New, then New Source File.

An empty document will appear. Using the integrated editor, type the following into the document:

#include <stdio.h>

void puthex (unsigned int a) {

static const char hex[]="012345678%abcdef";
char tmp[8];
tmp[0]=hex[(a>>12) &15];
tmp[l]=hex[(a>>8)&15];
tmp[2]=hex[(a>>4) &15];
tmp[3]=hex[a&l5];
tmp[4]=" "';
tmp [5]="\0";
puts (tmp) ;

}

void foo () {

static int z;
for (z = 0; z < 100; z++) {
fputs (“z=",stdout) ;
puthex (z) ;
}
Note the unusual static declaration of variable 'Z'. This is to make sure its value is always available
for debugging (for more information, see page 20). Also note that even though the standard library
function printf would achieve the above more elegantly, it can't be used in this case because of

memory limitations.
Let's save the file and include it in our project.

* Under file menu, click Save (or press CTRL-S) and then select a save path
and a filename. Save the file under the newly created project path (i.e.

“\solutions\hello’), and name it as “foo.c”.

* Inside the solution Browser, right-click “Project 'hello"”. From the pop-up

menu, select Add existing item.

VSIDE User's Manual Page 17

3. Getting started with VSIDE

* A file selection dialog appears. Select “foo.c” and click Open.

The file “foo.c” should now appear in the solution browser. We want our main() function to call

foo(), so we need to modify “main.c”.

* Double click “main.c” under solution browser (or just select “main.c” tab
in the editor, if it is still open). Modify “main.c” so that it looks as follows

(changes are shown with gray background):

#include <stdio.h>

void foo(); /* Introduce foo () function */
main () {

int 1i;

puts ("This is fun!\n");

foo(); /* Call foo() */

while (1) ;

return 0;

}

* Now compile the program, like described above. Should there be any

errors, fix them and compile again.

The new function foo() should now be integrated into our project. We will test it in the next section.

3.7. Setting breakpoints

The next thing to do is to learn how to use breakpoints. A breakpoint stops the program's execution
when the location of the breakpoint is reached. Breakpoints can be set in the edit mode, or during

debugging.

* Under “main.c”, set a breakpoint to the line “foo(); /* Call foo() */”. You
can add breakpoints either by left-clicking the gray area of the code editor
(margin) or by moving text cursor to the appropriate line and pressing F6.
A red marker dot should appear in the margin next to the source line. See

the illustration below.

VSIDE User's Manual Page 18

3. Getting started with VSIDE

int mwain(woid) {
puts("This is fun'ivn™):
& foo(); /% Call fooi) */
while (1)

You can clear (remove) breakpoints by repeating the action described above.
We will now create another breakpoint.

* Under “foo.c”, set another breakpoint to the first line of the for-loop:

fputs(“z=",stdout).

We want this second breakpoint to be active only when C language condition “z == 5 is true. To

make the second breakpoint conditional, we need to open the breakpoint window.
* From the Windows menu, select View Breakpoints (or press CTRL-3).

A window like the following should appear (by default, it is located on the tab bar at the bottom of
the IDE window, click the tab titled breakpoints to make it visible):

Breakpoints @

< Remove |

Active MName Condition Mem Addr
@ mainc(d) 0x6543325C
@ fooc(d z== 0x6543325C

To make the “foo.c” conditional, click on the foo.c() breakpoint line under the condition column.
This is the position where the “z == 5 is located in the picture above. Type the condition “z == 57

(without quotation marks). Remember to use spaces around “=="!

Note that conditional breakpoints may cause the simulation to run slower, depending on the
breakpoint position. Each time the execution reaches position where a breakpoint is located, it

causes a slight delay regardless of whether the condition is true or not.

* Build the program and execute (press F5).

VSIDE User's Manual Page 19

3. Getting started with VSIDE

The program should now hit the first breakpoint inside main(). You will see a small arrow

indicating the position of the execution. Let's proceed to the next breakpoint.
e Continue running the program (press F5 again).

The program should pause again. Study the standard input/output window output. It should contain

the following lines:

This is fun!
z 0000
0001
0002
0003
0004

N N N N

3.8. Variable evaluation

You can track the values of variables using the active variables window.

Please note that values of all variables may not be available at all times. This is especially true for
local variables within a function's scope. If you need the value of a certain local variable during
debugging, try declaring it global when possible (the easiest way to achieve this is by declaring the
variable static, like in the example code above). However, it is advisable remove the static
declaration when debugging is no longer needed. Extensive use of local variables will generally

result in faster and smaller code.

* Locate the Active Variables window in the screen. If it is not visible, use the

Windows menu and select View Active Variables. 'z' should be visible there.
Now let's try to change the value of 'z' on the fly.

e Under the Active Variables window, click the left mouse button on 'z' value.
A typing cursor will appear. Type '0' (a zero without the quotation marks)

as the new value. This will effectively start the loop from the beginning.

* Continue program's execution (press F5 again).

VSIDE User's Manual Page 20

3. Getting started with VSIDE

Program should break again at the conditional foo() breakpoint. The standard input/output should

now contain the following:

This is fun!
0000
0001
0002
0003
0004
0000
0001
0002
0003
0004

N NNNNNNNNN
| |

Another way to deal with variables is to use the Watches window. You can type variable names in

the watch window, VSIDE will evaluate them with every screen update.

* Locate the watches window on the screen. If it's not visible, use the

Window menu and select View Watches.

e Left-click <add new...>. Type 'z' (again, without quotation marks) and
press enter. Whenever 'z' is visible at the current code location, its value

will be displayed. When it is not, the value will be displayed as '?".

When you're done, you can stop the debugging session for now.

3.9. Modifying project options
Let's take a look at project options. You can find all settings related to how to build the project
(compilation, linking, custom build steps etc) here.
* Under Solution Browser, right-click Project. Select Properties.
Project options dialog will open.

* Select C Compiler tab, as shown in the picture below.

VSIDE User's Manual Page 21

3. Getting started with VSIDE

Edit Project Configuration: [Enwlaﬁon-Debug -]

General | C Compiler | Assgembler | Linker | Debugging | Tools |

Incude directories: include

Preprocessor definitions: DEBUG

Campiler warnings:
Add debug symbals: W
Optimization level: -00 -

Additional options: -fsmall-code

We want the compiler to optimize the code. We can do it by changing the optimization level from

-00 to -0O6.
* Set the optimization level to -06. Click OK.
To put the new settings into effect, the executable must be rebuilt.

* From the build menu, select Rebuild solution. Note that since we have only
one project under solution, it would have the same effect to select 'Rebuild

project'.

This is the end of the introduction tutorial. Hopefully you now have a basic insight on how VSIDE
can be utilized for software development on the VSDSP platform. The rest of this document will

describe the features of VSIDE in more detail.

VSIDE User's Manual Page 22

4. Development environment

4. Development environment

4.1. Introduction
This section provides a description of the basic concepts of VSIDE.

4.1.1. Projects and solutions

Project management in VSIDE is based on two conceptual objects called solutions and projects:

* A project represents a single executable or a static library. A project
contains a set of source files and describes the build steps that are required
to produce a binary file, the target. You can find all compilation and

linking related settings from the project's properties.

* A solution contains the dependency relationships among projects (e.g.

“Executable” project with a depending “Static library” project).

VSIDE User's Manual Page 23

4. Development environment

Solutions and projects have “one-to-many” relationship. A solution can contain any number of

projects, but a project always belongs to exactly one solution.

While a solution can contain several projects, only one of the projects are active at a time. The
active project is what receives the actions (e.g. gets compiled) when instructed. Small applications

can usually be developed using no more than one project.

4.1.2. Configurations

A configuration represents the settings of a particular project/solution.

For example, a typical project can have different configurations for debugging and release purposes.
Usually the debug version can be less optimized and include symbol information for debugging,
whereas the release version should be as small and fast as possible and contain no symbol
information. Instead of having to edit project options constantly (switching on and off the debug
symbol option), creating two project configurations and then switching then between them makes

more sense.

Solution configuration works in this way. Switching between solution configurations also switches
current active project configuration; this is because solution contains also information for each

project which configuration is active.

Every project and solution must have one or more configurations each.

4.1.3. Dock windows

VSIDE's user interface is based on the dock window concept. Most visible components of the user
interface are actually dock windows. Such window can be freely moved and resized within the main

VSIDE window, or even outside from it.

Dock windows can be dragged into dock positions (located at the edges of the main window) by
holding the left mouse button on the window's title bar and moving the mouse cursor to a dock
position. Note that dock windows can be “cascaded” on top of each other. If several dock windows
are cascaded on the same edge, a tab bar will appear with tabs representing each of the cascaded

windows.

VSIDE User's Manual Page 24

4. Development environment

Note that VSIDE maintains separate window position information for debugging, project edit and

initialization states.

4.2. Solution browser

Currently open solution and its context is shown in the Solution browser window.

Solution Browser @

—Q Solution 'VSIDE Example'

=

Project 'vside_example'

AHeader files
- E350urce files
g----puthex.c
; - [Bmain.c
1 _EDProject ‘vside_example_2' (Active)
é""'IHjOﬁ'IEr
b ZASM files
g----fﬂHeader files
=-Sqs0urce files

o[£ flename.c

In the picture above, there is a solution called “VSIDE Example”. It contains two projects. Within
each project, there are folders that contain the individual files. These folders are used to group

similar types of files together, they do not reflect the directory structure on the hard drive.

One of the projects is always selected as active. When invoking project actions (such as Build
project), the active project is affected by the operation. To change the active project, right-click on

the top of the project icon (inside the solution browser window) and select Set as active project.
To quickly open source file for viewing or editing, double-click on the file's icon.

There are several useful features that can be accessed through the solution browser. They are
invoked by right-clicking either files, folders, projects or solutions. These operations are described

below.

VSIDE User's Manual Page 25

4. Development environment

4.2.1. File operations

Item
Compile

Remove

Properties

4.2.2. Folder operations

Item
Add existing item...

Remove

Rename

4.2.3. Project operations

Item

Set as active project

Description
Compile the file.
Remove file from project. This will not physically remove
the file from hard disk.
Edit file properties.

See section 4.7 for more information.

Description
Add new source file(s) to the project.
Remove the folder and its contents from the project. Again,

this will not physically remove any files from the hard disk.

This option is not available to some of the folders that must
exist in the project.

Rename the folder.

This option is not available to some of the folders that must

exist in the project.

Description

Select project as active. Active project is affected by project-

specific commands.

Build
Rebuild All
Clean

Save project

Build the target of the active project.
Clean and then build the target of the active project.
Clean project's target and any temporary object files.

Write changes to the project to disk.

VSIDE User's Manual

Page 26

4. Development environment

Item

Remove project

Add folder
Add existing item...

Properties

4.2.4. Solution operations

Item
Build Solution
Rebuild Solution

Clean Solution

Description

Remove a project from solution.

This will not physically remove any project files from the

hard disk.
Add a (virtual) folder to the project.

Add an existing item to project.

The proper folder for the file is automatically selected.

Edit project properties.

See Section 4.8 for more information.

Description
Build all projects within a solution.
Rebuild all projects within a solution.

Clean all projects within a solution.

Add new project... Add a new project to the solution.
Add existing project... Add an existing project to the current solution.
Properties Edit solution properties.
See section 4.9 for more information.
VSIDE User's Manual Page 27

4. Development environment

4.3. Editor

Integrated source code editor is a regular text file editor that supports

including C syntax highlighting.

The code editor is also used to display code during the debugging state.

ﬁlename.c;“i filelist.c |

the basic editing features

ConsolePutCHar (minifatlnfo.fileName(3] & OXEE);
ConsclePutChar(' ');

1fn = minifatInfo.longFileName;
while (1

2 o} *1fn) »>> B
ConsolePutChar({*1fn) >> B);
else
break;
if *1fn) & Oxf£) {
ConsolePutChar((*1fn) & 0xff);

else
break;

m

Editor window is tabbed, i.e. each open source file has its own tab in the top of the editor window.

By clicking the tab, the particular source file will be shown. By clicking the close button on the right

top corner of the editor (or pressing CTRL-W), the current source file will be closed.

Basic editor commands are found in the Edit menu:

Editor menu item Keyboard Description
shortcut

Undo CTRL-Z Undo previous edit command

Redo CTRL-Y Redo previous edit command

Cut CTRL-X Cut selected text

Copy CTRL-C Copy selected text

Paste CTRL-V Paste previously cut/copied text into cursor position

Go to line CTRL-G Go to source code line. New dialog will appear where the line
number is entered.

Find... CTRL-F Find text within the current source file. New dialog will appear
with more options.

VSIDE User's Manual Page 28

4. Development environment

Editor menu item Keyboard Description
shortcut
Find next F3 Repeat find operation.

To find out the full path name to source file, hover the mouse cursor over a file tab (where the

filename is shown), and after one second a tool tip window will appear with the full pathname.

If any text files are modified outside the VSIDE editor, VSIDE will notify the user and ask if the
modified files should be loaded into the editor.

4.4. Building

The VSIDE build commands are described below.

Note that project build commands affect the active project. If you have multiple projects, you can
select the active project by right-clicking on project icon in solution browser window and selecting

Set as active project.

4.4.1. Build commands

Item Icon Keyboard Description
shortcut
Build solution n F7 Build all projects within the current solution.
HEH
Rebuild solution Clean and build all projects within the current
[:::::]
solution.
Clean solution b Delete all intermediate files wused during
building.
Build project SHIFT-F7 Build the active project.
Rebuild project CTRL-SHIFT-F7 Cleans and builds the active project.

VSIDE User's Manual Page 29

4. Development environment

Item Icon Keyboard

shortcut

Description

Clean project

Delete all active project's intermediate files used

during building .
Stop build Stop the current undergoing build process.
Configuration Open configuration manager. More information
manager below.
VSIDE User's Manual Page 30

4. Development environment

4.4.2. Configuration manager

Configuration manager is used for managing the solution and project configurations.

-
£} Configuration manager @&J

| Create copy | | Rename | | Remove |

m Solution: hello

----- o e

_ﬂproject: hella
i Emulation-Debug

—r—

To create new configuration, select a previous configuration and click Create copy.
To rename a configuration, select the configuration and click Rename.

To remove a configuration, use Remove. Note that both solution and project must have at least one

configuration at all times, so the last configuration can not be removed.

4.5. Menus

Commands accessible through menus are described below.

4.5.1. File menu

File menu item Description
New->Project Create a new project. New Project dialog will open, which
contains more options for project creation.
New->File Open a new text file in the editor.
New->Blank solution Create a blank solution. New Solution dialog will open,
which contains more options for project creation. Any

currently open solutions will be closed.

VSIDE User's Manual Page 31

4. Development environment

File menu item

Open->Solution

Open->Source

Open->Executable into simulator

Close

Close solution

Description
Open an existing solution from disk. Any currently open
solutions will be closed.
Open an existing source file from disk.
Simulate an executable without projects/solution. See
Section 5.3 for more information.
Close the currently active text file.

Close the currently open solution.

Save Save the currently open source file to disk. If the file has no
name, this command behaves like “Save As”.

Save As Save the currently active source file to disk with a different
name.

Save All Save all unsaved text files to disk.

Recent Files

Recent Solutions

Display a list of recently used files. Selecting a file from the
list will load the file into the editor. VSIDE remembers four

most recently viewed files.

Display a list of recently used solutions. Selecting a solution
from the list will close any currently open solution and load
the selected solution. VSIDE remembers four most recently

opened solutions.

Exit

4.5.2. Edit menu

See Section 4.3 for more information.

4.5.3. Project menu

Closes VSIDE.

Project menu item

Add existing item...

Description

Add an existing item to project. The proper folder for the file

is automatically selected.

VSIDE User's Manual

Page 32

4. Development environment

Project menu item
New folder

Generate makefile

Properties

4.5.4. Build menu

See section 4.4 for more information.

4.5.5. Debug menu

See section 5.1 for more information.

4.5.6. Windows menu

Window menu item

Close all documents

Description
Add a (virtual) folder to the project. These folders are only
used to group similar files together.
Generates makefile named Makefile <projectname> into the
project folder.

Edit project properties. See section 4.8 for more information.

Description

Close all files in the integrated editor.

View <dock window name>

Show/hide <dock window>.

4.5.7. Help menu

Help menu item

Description

Help Open the VSIDE help viewer.
About Show VSIDE copyright and version information.
VSIDE User's Manual Page 33

4. Development environment

4.6. Creating a new project

Select New project from the File menu to create a new project.

" Mewe Project -7 =]
Salution Project
Project template: | Show anly campatible bemplates

WE1053 hello_woarld
W51053_audio_effects
WE1053_decimator
WEL053_delay

w1053 stereofir
WS1053_uart

wery simple hello world' application.

Project name: MyPraoject
Project Falder: CihsersiMel Documentstsolutions| MMy Solukion
Create subfolder for project | Back | | a4 | | Zancel

If existing solution is already open in VSIDE, new project can be added into it. If solution is not
available, new project dialog will create an empty solution. In this case, name and template must be
specified for the empty solution. You must also provide a location on the hard drive where files
associated with the solution and its projects will be stored. Click the Browse button to open a

directory selector dialog.

A project template contains default settings and source files - aimed to speed up the process of
starting a new project. There can be a different number of project templates available depending on

the VSIDE distribution.
Remember to enter a name for your project in the corresponding input box.

If a solution is already open, there is an option to add the new project under the current solution or

to close the current solution and create a new solution.

VSIDE User's Manual Page 34

4. Development environment

When creating a new solution, check “Create subfolder for project” to create additional project
directory under the solution directory. The full project path is determined by combining base path

with solution's name and possibly with the project's name.

4.7. File options
& File 'main.c’ Options - B [

Edit Project Configuration: IEmuIation—Debug -]

Custom build |

Build with: IAutomah'c - ‘

Custom build target:

Custom build command{s):

Cedle=)

The build process of an individual file can be customized, thus bypassing the automatic builder.

Build command can be manually overridden, or the file can be completely excluded from the build.

To configure individual file build settings, right-click on a source file's icon (under solution
browser) and select properties from the pop-up menu. File Options dialog (illustrated above) will

appear.

Select the project configuration that you wish to make this change for. Changes only apply to the

selected project configuration, others remain unchanged.

Select the desired build method from the combo box next to Build with label. The options are:

Item Description

Automatic Use the automatic builder

VSIDE User's Manual Page 35

4. Development environment

Item Description

Custom build Custom build commands must be entered to the
Custom build command(s) input box. The
commands are executed in the shell as they are
written here. Use Carriage Return (CR) to

separate commands from each other.

Example:
echo “Building test.c...”<CR>
vee -c test.c

None (exclude from build) The file will not be processed in any way.

VSIDE User's Manual Page 36

4. Development environment

4.8. Project options

-
Project "hello’ Options _ &Iﬂ_hJ

Edit Project Configuration: IEmuIation—Debug -]

General | C Compiler | Assembler I Linker I Debugging | Tools |

Indude directories: indude
Preprocessor definitions: DEBUG

Compiler warnings:

Add debug symbols: &
Optimization level: -Q0 -
Additional options: -femall-code

o) o=

The active configuration is shown at the top of the dialog. Any changes will affect this configuration

only.

It is possible to override all these settings for individual files by using custom file configurations.

Any directory name can be either absolute or relative to the project's path.

4.8.1. General

This section contains the general project settings.

Item
Project type

Target filename

Target directory

Description
Executable, Static Library or NAND Flash/EEPROM image.
Executable contains a linked application, while static library is
a collection of object files. Last option behaves like executable,
but produces an additional image file (.img) suitable for
firmware creation (either for Flash or EEPROM).
Name of the target that will be created when the solution is

compiled.

Directory name where the build target will be created.

VSIDE User's Manual

Page 37

4. Development environment

Item Description

HW Description file Hardware description file that will be passed to both C

compiler and assembler when compiling “.c” or “.s” files.

4.8.2. C Compiler

This section contains the settings for compiling C language (.c) files.

Item Description
Include directories Add directories to the include search path. Separate with
comma (',").
Preprocessor definitions Define preprocessor symbols. Separate with comma (',").
Compiler warnings Add any compiler warning control flags here.
Add debug symbols If checked, debug symbols are added to object files (and to any

resulting executables). Without debug symbols you cannot
debug executables at C language level.

Optimization level Define optimization level: 0 (off) .. 6 (max)

Additional options Any options added here will be added to every C compilation

command. Separate options with spaces.

4.8.3. Assembler

This section contains the settings for compiling assembly (.asm, .s) files.

Item Description

Generate List file Defines a file where to output a verbose listing
of the program. Leave blank if list file is not

needed.

Additional options Any options added here will be added to every
assembler command. Separate options with

spaces.

VSIDE User's Manual Page 38

4. Development environment

4.8.4. Linker

This section contains the settings for linking object files. These settings are valid only if project type

is “Executable”.

Item Description
Library directories Add directories to the library search path.
Separate with comma (',").
Libraries Libraries to be linked with the executable.

Separate with comma (',").
Startup module Filename of a startup module object to be linked

with executable.

Mem Description file Memory description file to be used during
linking.
Linker command file A linker command file can be used to map and

force sections into specific memory areas as
found in mem desc. Use this parameter to
override the default command file.

Incremental linking Enable incremental linking. See VSLINK

documentation for more information.

Keep relocations Prevents relocations to be deleted. See VSLINK

documentation for more information.

Strip symbols Discards any symbol information from objects.

Additional options Any options added here will be added to every

linker command. Separate options with spaces.

VSIDE User's Manual Page 39

4. Development environment

4.8.5. Debugging
These settings are valid only if project type is “Executable”.
Item Description
Mem Description file Memory description file to be used when

debugging the system. This may differ from one

used during linking.

4.8.6. Tools

This section defines which executables will be used for C compiler, assembler, linker and archiver

when building a project.

Item Description
C Compiler EXE: Executable for C compiler. Default is “lcc”.
Assembler EXE: Executable for assembler. Default is “vsa”.
Linker EXE: Executable for linker. Default is “vslink™.
Archiver EXE: Executable for archiver. Default is “vsar”.

VSIDE User's Manual Page 40

4. Development environment

4.9. Solution options

Solution options are divided into three tabs;

« “Configurations” - for associating active project configurations with solution
+ “Cores” - for configuring debugged cores (note: currently disabled)
« “Debugging”- for configuring debugging mode

On the top of the dialog, configuration under modification is shown.

Solution options are automatically saved when they are modified.

Edit Solution Configuration: [Enwlation-Debug - l

Configurations | Cores | Debugging |

Debug Settings

Debug mode: [HW Emulation

Serial Port Settings

Serial port:

Initial speed:

Target speed: 115200 -

Speed multiplier:

Target Settings

Chip type: [vs1000 |
Clock speed: 12 MHz

Monitor file:
Exec Addr: 0x50

Any directory name can be either absolute or relative.

VSIDE User's Manual Page 41

4. Development environment

4.9.1. Configurations

Each solution configuration contains the information of which of the project configurations are
active. Thus, the solution configuration acts like a group selector for active project configurations.
Switching active solution configuration from one to another will switch all the active project

configurations.

The active project configuration list contains a list of all the projects and the selected project active

configuration.

By clicking the project name, the active project can be changed from the Project settings group

below.

4.9.2. Cores

Cores tab configures the DSP cores used during debugging. This version of VSIDE does not

support multi-core debugging, thus this section is always disabled.

4.9.3. Debugging

Debug target for the solution is defined in the debugging tab. There are two options; software-based

simulation and hardware-based emulation.

In case simulation is being selected as the debug mode, no further options are needed. For the

hardware emulation, the following parameters must be given:

Item Description
Serial port Name of the serial port which will be used for
communicating with the hardware.
Initial speed Initial speed is the serial port speed that the

target communicates right after reset.

Target speed Serial port speed that will be used to
communicate with the target (except for the
initialization phase which uses “Initial speed”

setting).

VSIDE User's Manual Page 42

4. Development environment

Item Description

Speed multiplier If a high-speed serial port is available, it is
possible to use this value to get serial speeds
over 115200 bps.

Chip type VSDSP chip type which is used in the target
board.

Clock speed VSDSP clock speed which is used in the target
board.

Monitor file Hardware emulator's monitor file to be loaded
into the target. Not applicable for VSDSP4.

VSIDE User's Manual Page 43

5. Debugging

5. Debugging

This chapter describes the integrated debugger of VSIDE. This information applies to both software

simulation and hardware emulation.

5.1. Debug commands

Debugger can be controlled by using debug menu, debug toolbar or keyboard shortcuts. Layout of

the debug toolbar is shown below.

fn 2% |Emuation-Debug B M oD Oe6 & Bk ¢ &

The following debug operations are available:

Item Icon Keyboard Description
shortcut
Run > F5 Run the executable. The execution will continue

until breakpoint is hit, or Break command is

activated.

Note: During hardware emulation, it may not be
possible to break execution without previously set
breakpoints.

Run to Cursor As above, except the execution will stop when
location of the cursor is reached (or any breakpoint

before the cursor location).

Break Fé6 Break the execution. This command is not available

1l

during hardware emulation.

Stop SHIFT-F5 Break the execution and exit the debug mode.
debugging

VSIDE User's Manual Page 44

5. Debugging

Item Icon Keyboard Description
shortcut

Restart) F4 Unload current executable, reload executable again,
reset the VSDSP and run the executable until main()
is reached.

Step single F8 Execute a single clock cycle. Useful for debugging

CLE

core clock in the disassembly view.

C-level step M F11 Continue execution until the the next C line, or

into execution moves into another function.

C-level step m F10 Continue execution until the execution reaches the

over next C line.
Currently not supported in software simulation.

C-level step 7 SHIFT-F11 Continue execution until the current function exits.

out Currently not supported in software simulation.

Profiling & Scroll Lock Start / stop profiling.

toggling For further information on profiling output file, see
VS DSP Software Tools User’s Manual, section 9.6.
Not supported in hardware emulation mode.

View assembly - Toggles the source disassembly view. Available
during debugging only.

Refresh F2 Refresh all windows. Use this to refresh in
simulation mode to get up-to-date simulation status.

VSIDE User's Manual Page 45

5. Debugging

5.2. Debug windows

This section describes the debugging windows. These, like most other dock windows, can be shown

and hidden individually by using the Window menu.

5.2.1. Watch window

Watch window contains an user-defined list of variables to be viewed.

To enter a new value to be viewed, click on <add new...> and type variable name, e.g. “a” or

“hexTable[10]”. The variable is then added to the list, with it's current value shown on the right.

Watches @
¥< Remove |
Mame Value Type Scope
i~<add new...>
z 0x0005 57" INT STATIC

If a variable cannot be evaluated at the current execution address, all the parameters will be set to '?'.

Please see page 20 for important notes regarding the availability of values of variables.

To delete variable from the watch list, select the variable by clicking it and select Remove.

5.2.2. Active variables window

Active variable window shows C language variables that are visible at the current execution

address.

Active vaniables @

!Name Value Type Scope
bez Ox0005 52 INT STATIC

----- hex <Hidden> CHAR[] STATIC !

To modify the value of a variable, click on the variable's value column and type a new value. The

new value can be decimal, hexadecimal (prefixed with '0x') or symbol.

VSIDE User's Manual Page 46

5. Debugging

Please note that the contents of arrays are not downloaded when using hardware emulation. Instead,
the array fields will display <hidden>. This is done to speed up debugging over the serial port. Use

the watch window to inspect array contents in the hardware emulation mode.

5.2.3. Peripheral window
Peripherals are only supported by the software simulator. Peripherals are used to make system-level

simulation possible.

The peripheral window displays the status of the loaded peripherals. Each peripheral instance that
supports the peripheral GUI API is shown here.

b4 Loaded Peripherals
UARTO | UARTI TIMER1 TIMERZ2 | STDION

IN ouT Intemal variables

M ame Walue
BIT_COMF 0xD
Bits 0«10
DODR 00
IDATA =0
INT_FaLL w0
INT_PEMD 0xD
INT_RISE 0xD
ODATA 00

=
o

Each peripheral can define individual graphical user interface. Some of the elements may allow user

interaction, depending on the implementation of the peripheral.

To use one or more peripherals during the simulation, add the required peripherals to project's
mem_desc file under PERIPHERAL section. Configured peripheral plugins must be located in
VSIDE/plugins directory.

For more information on peripherals, see separate Peripheral GUI API documentation.

5.2.4. Log window

Log window shows build and debug messages.

5.2.5. Standard input/output window

VSIDE User's Manual Page 47

5. Debugging

Log Window L IE
Build output |[> Debugging output |

————— Build Started-—--— Project: hello, configuration: Emlation-Debug

wvee —g —~h hw_desc -00 -fsmall-code —-DDEBUG -Iinclude -Ic:\WSIDE\vside srchsrchrelease/include -o Emilation-Debug/main.c

Succesafully compiled 368 lines (& in source £ile)
C 9 CFOX-13 X070

vslink -k -m mem user lib/roml000.o lib/c-nand.o Emulation-Debug/main_.o -o Emilation-Debug/hello.coff -Llib -lc -ldewl!
Finished.
< m 3

The standard input/output window displays VSDSP core output, as well as sends key-presses to the

stdin stream.

Standard Input/Output 9 @
pee Files:

oo 00.0gg = file name

02 02.0gg = file name

04 04.0gg = file name

a7 07.0gg = file name

KRHVI2~1 kahviZ4Zla meso-around 492.ogg = file name

KAHVI1~1 kahviléla esem-bckbook.ogg = file name

KAHVI1~2 kahvilélb esem-dispehrse.ogg = file name

KRHVI1~3 kahvilélc esem—spider boat fisherman loudspeaker fl- = file name
ERHVI1~4 kahviléld lackluster&esem-aatu(ussn).ogg = file name

EAHVI1~5 kahviléle esem-legho(send someone off to their drea = file name
KAHVI1~& kahvil76a introspective-gewesen.ogg = file name

ERHVI1~7 kahvil76b introspective-undocumented.ogg = file name

KAHVI1~8 kahvilTéc_introspective-gewesen part2.ogg = file name

KAHVI1~8 kahvil7éd introspective-specular highlights.ogg = file name
KRTIAR~3 kahvil7ée introspective-the leaves_in the rain.ogg = file name

If the stdout data grows too large, the window will cut off the oldest data from the top.

5.2.6. Breakpoint window

The breakpoint window displays the currently set breakpoints.

Breakpoints are used to stop program execution at requested positions. When the program execution

reaches the breakpoint address, the execution will be break.

Breakpoints can be added under disassembly window (during debugging only), or directly at C
source lines, regardless of the debugging state. Source-line breakpoints are automatically inspected

and added to the corresponding program memory addresses.

VSIDE User's Manual Page 48

5. Debugging

Breakpoints @
< Remove |
Active Name Condition Mem Addr |
B mainc (@) 0x6543325C

B fooc(®) z==5 0x5543325C

To remove a breakpoint, select the breakpoint by clicking on its name, and then press Remove (or

press DEL key).

A breakpoint can be either active or inactive. An inactive breakpoint has no effect on program
execution. To make a breakpoint inactive, click the red dot in the breakpoint window. The red dot

will turn gray. To re-activate it, click the gray dot, and it will change red again.

VSIDE also supports conditional breakpoints. You can enter C level conditional expressions by
clicking the breakpoint's Condition field and entering a condition, e.g. “z != 0”. Remember to use
spaces around conditional operators. In case the condition was incorrect, VSIDE will show an error

when the code reaches the breakpoint for the first time.

5.2.7. Command console window

Command console provides a text-based interface to the simulator and the emulator.

VSIDE User's Manual Page 49

5. Debugging

Command censele @
rEEw HESOY OGO MENDLY CEON [ITE
where Digplays the current section and lakel E
next Executes until the next JR{cc) instruction
stepinto Step C lines, enter subroutines
Itepout Execute until return from the function
echo Echoes arguments
e Execute program
who Shows 'active' wvarisbles
trace Shows 'active' cz=ll stack
tasks Shows tasks in the system
list List source code
reset Beset Processors
register = value
[xyp] :address = walue
b -
BC : 0x0000017a
Next Exec: 0x017a AND NULL, NOLL,6 CO
=
4 | T 3

To use the command console, enter commands into the edit box on the bottom of the command

console window. You can use command history by using the cursor keys.

To see the list of commands available, type Aelp and press <enter>. To see the syntax of a specific

command, type help followed by the name of the command. Further documentation can be found
from the VSDSP Software Tools User's Manual.
5.2.8. Memory window

Memory window will display memory contents in hex and ASCII format.

Displayed memory type (X/Y/I) can be changed by using combo box on the top of the memory
window. Below is an example output from the memory window. Please note that contents of

unconnected memory will show up as dashes ('-').

VSIDE User's Manual Page 50

5. Debugging

Memory

X-memory - |

0x00001FC4. FDF4
0x00001FCE BCAZ
0x00001FCC DD52
Ox00001FDO 4615
0x00001FD4 333C
0x00001FD8 F1ZE
Ox00001FDC 2574
0x00001FEQ BFED
0x00001FE4. TFAC
Ox00001FES 3523
Ox00001FEC EE4D
Ox00001FFO0 3D40
0x00001FF4 061E
0x00001FF8 370D
Ox00001FFC 2344
0x00002000 EFOS
0x00002004. DDSF
0x0000Z008 €878
0x0000200C BBEC
0x0000Z010 Fe30
0x0000Z014 25AE
000002018 4513

BA

4]
4
4]
1
&
2
=]

P R

w
o e R

b

oo ow o R R o

R R r)

SR
wow o

a
3240
Be0S
0508
F787
Fa3C
F&BE
DERC
ECCC
852C

5582

FFES -

LIBC

O03RE _R._I._._.

Z5R0 F.

2504

SeD5 ...
1108 _tF

TE43
DSEF

EEEBL 5

Doh4

Caso

El04 .. ==
1700 R S
&C55

EDFB ..

B5ZF

BEO5Z

F1, o - G —
SROE _0..
450D _.

5094

There are several ways to change the displayed memory address. Address or variable name can be

entered into the Goto address edit box. It is possible to use hex or decimal format, or symbol names

(e.g. “main”).

To freely browse memory, use keyboard cursor keys and PAGE UP and PAGE DOWN or mouse

wheel.

To modify memory contents, just move the “memory cursor” (underlined and bolded value) to the

desired address and type new hex values using the keyboard.

5.2.9. Register window

The register window displays the current VSDSP core register values.

The register window can display register values in hex, decimal and binary formats. Use buttons

“H,,, “Da) and “B” to toggle between these.

VSIDE User's Manual

Page 51

5. Debugging

Registers @

(4]

Register Hex Value Dec Value -
= Ox0000474749F 4671311
i AD 0x474F 13255
Al 0x0047 71
a2 0x00 0
[-B Ox000047474F 4671311
b1 0x2C00 11264
02 0x00 0
[-D 0x0000000000 0
10 0x181E 6174
11 01459 6793

12 Ox1A41 6721 =
13 Ox1A79 6777
14 0x131D 6173
15 0x1A85 6789
16 0x1826 6182
17 0x1003 7433
- IPRO:PC Ox000008%6 2193

PR

| C 0x0000 0
- E 0x016F 367
R0 0x0298 664
LR O%7CEF 31855
5 0x016F 367
fEaBvRG 0x0210 528

|88 0x0210 528 T

To modify register values, left-click on field and enter a new value.

5.2.10. Disassembly window

The disassembler window can be used to view the machine language representation of the source
code. It is useful during debugging only. To display (and hide) the disassembler view, click on the

assembler icon on the toolbar.

The viewing position can be changed by scrolling the window, PAGE UP and PAGE DOWN,
cursor keys or using the mouse wheel. To jump to a specific address, type the program memory (I-

page) address or a function name to View addr/function edit box and press enter.

You can toggle breakpoints by clicking the area next to the disassembly code (margin).

5.3. Simulating executables directly

It is possible to simulate executables directly without creating a project or solution.

VSIDE User's Manual Page 52

5. Debugging

To simulate executables, open the File menu and select Open and then Executable into simulator.
Then select the appropriate executable file (typically a .coff file) and required mem_desc file. The

simulator will now open.

Please note that the harware emulator does not support direct program execution.

VSIDE User's Manual Page 53

6. Miscellaneous

6. Miscellaneous

6.1. Command line options

VSIDE supports some command line options.

For all operating systems, it is possible to automatically open a solution file by giving the solution's

filename as a command line argument. Other file types as parameters will be opened in the editor.
All VSIDE versions also support style parameter:

style <style>, changes the GUI style. Style can be one of:
o windows

o motif

o platinum

The X11 version of VSIDE also supports some traditional X11 command line options:

-geometry <geometry>, sets the client geometry

-fn or -font <fonr>, defines the application font. The font should be specified using an X

logical font description.

-bg or -background <color>, sets the default background color and an application palette

(light and dark shades are calculated).

-fg or -foreground <color>, sets the default foreground color.

-btn or -button <color>, sets the default button color.

-visual TrueColor, forces the application to use a TrueColor visual on an 8-bit display.

-cmap, causes the application to install a private color map on an 8-bit display.

VSIDE User's Manual Page 54

6. Miscellaneous

6.2. Creating project templates
Project templates are frameworks that are used as a starting point when a new project is being
created. Available project templates are shown in “New Project” dialog.
Project template contains:

« project configuration information

- any files related to project, e.g. C source files, mem_desc files, libraries, documentation, etc.
Creating a new project templates is simple:

« Use New project and select a project template that resembles the template project you want to

create.

« Modify it normally with VSIDE it until it contains the project settings and files you'd like to

have as a template. All files should be located under the project's directory.

- Go to operating systems file manager, and make a copy of the project folder to
(VSIDE DIR)/templates/project/. Rename the new folder to something that describes the

template project.
+ Under this new folder, rename the project file (with prefix “.project”) to “template.project”.

« Open “template.project” with a text editor, and find string “[Project]” in the beginning of the

file. Under this group, there is a variable named “ Name”. Set the name variable to:

Name = “$$$PROJECTNAME”

You may also want to change the target filename to :

TargetFilename = ""$$$PROJECTNAME .coff"
The new project template should be now available in “New project” dialog.

Note: creating new solution templates is not currently supported.

6.3. mem_desc file format

VSIDE User's Manual Page 55

6. Miscellaneous

The default name for the memory description file is mem_desc, but any name can be used as long
as the new name is specified for the linker and simulation/emulation tools. Memory description file

used by the linker can be changed from the project settings dialog.

If the memory description file is not found in the current working directory, it is searched for in the

directory pointed by the VSDSP_DIR environmental variable.

The memory description file consists of several parts that define different things.
« MEMORY section defines the general memory layout and memory types.
« CORE section defines clock frequency and boot address.

« PERIPHERAL section defines peripheral register mapping. Individual peripheral

instantiations configure the peripherals themselves.

6.3.1. MEMORY Section

Below is an example of a memory section of a mem_desc file.

MEMORY {
page 0:
i ram: origin = 0000h, length = 1000h
i rom: origin = 4000h, length = 800h, option = "ROM"
page 1:
bss x: origin = 0000h, length = 800h
page 2:
bss y: origin = 0000h, length = 800h
perip y: origin = 4000h, length = 400h, option = "OLDPERIPHERAL"
host mem: origin = 4400h, length = 400h
stdio: origin = 0x7000, length = 2, option = "vsstdio"
page 3:

VSIDE User's Manual Page 56

6. Miscellaneous

Each entry in the memory configuration file consists of four fields. The first one, page, defines the
memory page for that entry. The page definition can be omitted when the page does not change. The
second field defines a logical name for the entry, e.g. bss_x. The third field, origin, sets the starting
address, and the fourth field, length, defines the length of the memory block. Start addresses and

lengths are currently not restricted in any way except that they may not overlap.

An optional field, option, may be used to define special attributes for the memory entries. These
definitions are used only by the simulator. Hardware emulator will ignore any memory area

definitions with the option field present.
Currently the following special options are available:
option="ROM” flags a memory area as read-only.

option="quit” defines an end-address for program execution. If instructions are fetched
from memory address that has this option, the simulation is stopped with success return

value. This option is only available in page O (the instruction memory space).

option=">file” and option="<file" option starting with a '<' defines an input file, and
option starting with a ">' defines an output file. These options are only available in pages 1,
2, and 3. Pages 1 and 2 are data memories X and Y, respectively. Page 3 refers to both of
them, meaning that page 3 can be accessed from both X- and Y -bus.

option="vsstdio” is a special module that provides C standard input/output support. It must
be defined into the right location for the libc16 and libc32 libraries. The normal locationis' Y
memory (page 1) at 0x7000.

option=" PERIPHERAL" defines an area as a peripheral bus bridge access point. Writes are
pipelined, reads cause one wait state. The actual peripheral register mapping is defined in the
PERIPHERAL section.

OLDPERIPHERAL defines an area as a peripheral bus bridge access point. Writes are
pipelined, reads do not cause wait states. The actual peripheral register mapping is defined in
the PERIPHERAL section.

6.3.2. CORE Section

VSIDE User's Manual Page 57

6. Miscellaneous

CORE {
frequency = 48.0MHz
bootaddr = 0x4000

The core section sets some parameters for the core. By setting a clock frequency (or cycle time) the

simulation can show and understand 'realtime'.

6.3.3. PERIPHERAL Section
Below is an example peripheral section of a mem_desc file.

PERIPHERAL {

:0x4000 = 15-0:INTERRUPT.enablelO
:0x4002 = 15-0:INTERRUPT.enablehO
:0x4004 = 15-0:INTERRUPT.origin0
:0x4006 = 15-5:0,4-0:INTERRUPT.vector
:0x4007 = 15-3:0,2-0:INTERRUPT.encount
:0x4008 = 15-0:INTERRUPT.glob dis
:0x4009 = 15-0:INTERRUPT.glob en

KK KK KKK

:0x4020 = 15-0:I0.ddr
:0x4021 = 15-0:I0.o0data
:0x4022 = 15-0:I0.idata
:0x4023 = 15-0:I0.int fall
:0x4024 = 15-0:I0.int rise
:0x4025 = 15-0:I0.int pend
:0x4026 = 15-0:I0.set mask
:0x4027 = 15-0:I0.clear mask
:0x4028 = 15-0:I0.bit conf
:0x4029 = 15-0:I0.bit eng0
:0x402a = 15-0:I0.bit engl

HKKHKKKKKKKK

y:0x4040 = 3-0:UARTO.ssr

y:0x4041 = 7-0:UARTO.data

y:0x4042 = 15-8:UARTO.data

y:0x4043 = 15-8:UARTO0.div0, 7-0:UARTO.div1l
y:0x4060 = 3-0:UART1l.ssr

y:0x4061 = 7-0:UART1.data

y:0x4062 = 15-8:UART1.data

y:0x4063 = 15-8:UART1.div0, 7-0:UART1.div1l
y:0x40a0 = 15-0:WDOG.config

y:0x40al = 15-0:WDOG.reset

y:0x40a2 = 15-0:WDOG.dummy

VSIDE User's Manual Page 58

6. Miscellaneous

The peripheral section defines the mapping of peripheral registers into memory. The memory area
must have been set aside in the memory section by using the option PERIPHERAL (asynchronous
peripheral bus, 1 wait state in read, pipelined write) or OLDPERIPHERAL (synchronous peripheral

bus, no wait states).

The peripherals must be instantiated with the same names that are used in the PERIPHERAL

section.

6.3.4. INTERRUPT Section
Below is an example interrupt section of a mem_desc file.

INTERRUPT {
type = vsdsp4
interrupts = 16

}

The interrupt section configures the interrupt block. Depending on the interrupt handler type,

different registers are available.

6.3.5. Peripheral instantiation

All other peripherals are configured and instantiated similarly to the interrupt handler. The
peripheral definition begins with a unique name. The following block defines the characteristics of

the peripheral instance.

I0 {
type = "stdio"
infile = "gpioin.dat"
outfile = "gpioout.dat"
bits = 16
intnum = 0
verbose = 1

}

The example instantiation above creates a peripheral called /O, which is the standard VSDSP4
interruptable GPIO block and gives it some parameters. Lines starting with a hash ('#') are regarded

as comments.

VSIDE User's Manual Page 59

